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Abstract

This paper presents a multi-objective iterative learning control (ILC) design approach that realizes an
optimal trade-off between robust convergence, converged tracking performance, convergence speed, and
input constraints. Linear time-invariant single-input single-output systems which are represented by both
parametric and nonparametric models are considered. The noncausal filter Q(q) and learning function
L(q) are simultaneously optimized by solving a convex optimization problem. The proposed method is
applied to a non-minimal phase system and compared with a model-inversion based ILC design. Using
the developed ILC design the underlying trade-off between tracking performance and convergence speed is
thoroughly/quantitatively analyzed.
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1. Introduction

Iterative learning control (ILC) is widely used in control applications to improve performance of repetitive
processes [1, 2]. The key idea of ILC is to update the control signal iteratively based on measured data from
previous trials, such that the output converges to the given reference trajectory. The purpose of this paper
is to present a multi-objective iterative learning control (ILC) design. More specifically, this paper considers
ILC applied to linear time-invariant (LTI), single-input single-output (SISO) systems. The setup is a standard
ILC type [1]:

uj+1(k) = Q(q) [uj(k) + L(q)ej(k + 1)] , (1)

where uj(k) is the ILC input signal and ej(k) is the error signal between the reference trajectory and the
output signal. The subscript j denotes the trial number. Q(q) and L(q) are known in ILC literature as the
Q-filter and learning function, respectively. The choice of Q(q) and L(q) is the main issue in the design of
an ILC algorithm.

Most ILC algorithms in the literature rely on a two-step problem formulation and the design procedures
are usually heuristic. The design problem of L(q) is usually formulated first. Various choices of L(q) have
been discussed such as P-type [3], PD-type [4], model-inversion [5–7] and phase-lead [8–10]. The first three
approaches aim to find a learning function that is closest to the inverse of the system dynamics. These
methods are sensitive to model uncertainties, and have difficulties dealing with non-minimum phase systems
[8]. The phase-lead type ILC is based on tuning a learning gain and a linear phase-lead variable. Even
though some guidelines have been provided to find the optimal variables, the tuning process is typically
trial-and-error. The system is required to be reset whenever the parameters are adjusted. After L(q) is
found, Q(q) is commonly designed as a low-pass filter. The filter characteristics (i.e. filter type, cut-off
frequency and order) are selected by the designer such that robustness and high tracking performance are
obtained. On the other hand, [11, 12] consider H∞-based ILC methods to design the learning function for
the given Q-filter. The solutions are however limited to only causal functions. Finally, [13, 14] proposed
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norm optimal ILC relying on tuning three weighting matrices. The computational cost of norm optimal ILC
is however high, especially if the trial duration is long.

Generally, the described ILC methods suffer from two disadvantages. First, selection of the Q-filter
and learning function are not always optimal. This is because of the nature of the two-step and heuristic
techniques. Second, multiple ILC objectives, namely robust convergence, convergence speed, converged
tracking performance and input constraint, are hard to consider explicitly in the design. For example, while
model-inversion ILC type often yields fast convergence speed, the converged tracking error might not be
satisfactory. The question is whether a smaller asymptotic tracking error can be obtained with (possibly)
the compromise of lower convergence speed? This trade-off analysis has not been investigated extensively in
the ILC literature.

To deal with these disadvantages, this paper proposes a one-step optimization based ILC design to
solve for noncausal Q-filter and learning function simultaneously. Furthermore, multiple ILC objectives
are incorporated into our algorithm. We reformulate the problem as a convex problem, guaranteeing an
efficient and reliable computation of the global optimum and allowing straightforward computation of trade-
off curves between different performance indices. These trade-off curves aid the control engineers in selecting
their desired controller taking into account different objectives. Additionally, the proposed design can deal
with both parametric and nonparametric models. For example, frequency response measurements of the
system [15] can be used directly, and hence the identification of a parametric model based on this system
data is not required.

The proposed ILC approach is developed in the frequency domain. Notice that the ILC analysis and
design generally rely on two system representations: frequency domain and lifted-system representation.
The lifted-system representation accounts for the finite trial length of the trial. However, it has a major
disadvantage in computational cost since the size of the matrices depend on the number of samples N , and
the cost of the optimization solvers is approximate O(N6) [16]. For applications with large trial lengths,
the computation of the learning matrices may take too much time, and the memory requirement may be
excessive. In [17], we have also shown that the convergence condition using lifted systems could be converted
into a linear matrix inequality, yet can be solved for only short trial lengths. On the other hand, the
frequency domain ILC assumes an infinite trial length, and hence is an approximation of the ILC system.
The advantage is that the approach requires considerably less computations and is practically more useful.
These reasons motivate us to investigate the frequency domain ILC.

The remainder of this paper is organized as follows. Section II provides the background on ILC and
discusses different objectives that can be considered in ILC design. Section III formulates the developed ILC
design approach. Simulation results are given in Section IV, and Section V concludes this paper.

2. Problem Formulation

2.1. System formulation

The ILC design is considered in discrete time, where the discrete time instants are labeled by k = 0, 1, . . .
and q denotes the forward time shift operator. Each trial comprises N time samples and prior to each
trial the plant is returned to the same initial conditions. We assume that the linear system is subject to
unstructured multiplicative uncertainty. That is, the method accounts for a set of uncertain systems P∆(q)
of the following form:

P∆(q) = P̂ (q)(1 + ∆(q)W (q)) , ∆(q) ∈ B∆ , (2a)

with
B∆ = {∆(q) = stable, LTI system : ‖∆(q)‖∞ ≤ 1} , (2b)

where ‖.‖∞ is the H∞ norm. P̂ (q) is the nominal plant model. And the uncertainty weighting function
W (q) determines the size of the uncertainty which is assumed to be known.

The Q-filter and the learning function in the ILC algorithm (1) are represented as their impulse responses:

Q(q) = ...+ q−2q−2 + q−1q−1 + q0 + q1q1 + q2q2 + ... (3)
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and
L(q) = ...+ l−2q−2 + l−1q−1 + l0 + l1q1 + l2q2 + ... (4)

These representations allow noncausal filtering.

2.2. Robust convergence and convergence speed

We consider the robust convergence analysis in the frequency domain. The frequency response represen-
tation is obtained by replacing q with ejω for ω ∈ [−π, π] in (1). Accordingly, the ILC system (1) achieves
robust convergence if [1]:

sup
∆∈B∆

|Q(q)[1− L(q)P∆(q)]| = γ∗ < 1, ∀P∆(q), ∀q ∈ D, (5)

with
D =

{
q = ejω | ω ∈ [−π, π]

}
. (6)

This condition also guarantees monotonic convergence with noncausal Q(q) and L(q) for sufficiently large
trial lengths [18]. In addition, the smaller γ∗, the faster uj(k) converges to the fixed point u∞(k) since
u∞(k) − uj(k) = Q(q)[1 − L(q)P∆(q)](u∞(k) − uj(k)). This will result in higher convergence speed and
hence more economical and desirable.

2.3. Robust performance

The tracking performance of an ILC system is based on the asymptotic value of the error signal in the
trial domain. Robust performance ILC requires the tracking performance specifications to be met for all
plants in the uncertainty set. If the ILC system (1) is robust convergent, the asymptotic tracking error is
given by:

e∞(k) =
1−Q(q)

1−Q(q)[1− L(q)P∆(q)]
yd(k), (7)

where yd(k) is the reference signal. Accordingly, the robust performance condition is defined as∣∣∣∣Wp(q)
1−Q(q)

1−Q(q)[1− L(q)P∆(q)]

∣∣∣∣ < 1, ∀P∆(q),∀q ∈ D, (8)

where Wp(q) is the performance weight selected by the designer. In other words, robust performance is
satisfied if the worst-case weighted performance function at each frequency is less than 1. The nominal
performance condition is identical to (8) except model uncertainty is ignored.

The ILC design usually accounts for robust convergence (5) and converged performance (7). If the system
model is perfect, it is trivial to choose L(q) as an inverse of the model and Q(q) = 1 so that the tracking
error converges to zero in one trial. This does not happen in real cases since models are never perfect and
can be non-minimum phase.

2.4. Input constraint

The input constraint condition is defined based on the converged input signal in the trial domain:

u∞(k) =
Q(q)L(q)

1−Q(q)[1− L(q)P∆(q)]
yd(k). (9)

As a result, the condition is given similar to the robust performance condition as follows,∣∣∣∣Wu(q)
Q(q)L(q)

1−Q(q)[1− L(q)P∆(q)]

∣∣∣∣ < 1, ∀P∆(q),∀q ∈ D, (10)

where Wu is the input weight function. It is worth noting that (5) concerns monotonic convergence of input
signal in the trial domain thus (10) is also sufficient for all input signals in the trial domain.
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2.5. Multi-objective ILC problem

In this work, the above considered ILC objectives are combined together in one constrained optimization
problem Q(q) and L(q):

minimize
Q(q), L(q)

convergence speed

subject to robust convergence (5)
robust performance (8)
input constraint (10).

(11)

The main idea is to optimize the convergence speed considering the given tracking performance specification,
and taking into account robustness and input constraint. The solution is elaborated in the next section, where
we will show later that it can be reformulated as a convex problem.

3. Main Results

This section first reevaluates the ILC design objectives and then solve the proposed optimization problem
(11).

3.1. ILC objectives

First, we consider the robust convergence (RC) condition (5). It is easily seen that

(RC) ⇔ sup
∆∈B∆

|Q(1− LP̂ )−QLP̂W∆| < 1, ∀ω (12)

⇔ |Q(1− LP̂ )|+ |QLP̂W | < 1, ∀ω (13)

⇔ |QLP̂W | < 1− |Q−QLP̂ |, ∀ω, (14)

where the argument q is abbreviated for convenience.

Lemma 3.1 (Necessary Condition). Consider the uncertain system (2), if the ILC robust convergence
condition

|Q(1− LP∆)| < 1, ∀P∆,∀ω, (15)

is guaranteed, then the following inequality is satisfied∣∣∣∣∣ QLP̂W

1−Q+QLP̂

∣∣∣∣∣ < 1, ∀ω (16)

Proof. From the following triangle inequality

|1− (Q−QLP̂ ) + (Q−QLP̂ )| ≤ |1− (Q−QLP̂ )|+ |(Q−QLP̂ )|, ∀ω, (17)

hence

1− |Q−QLP̂ | ≤ |1−Q+QLP̂ |, ∀ω, (18)

then from (14) and (18), yielding

|QLP̂W | < |1−Q+QLP̂ |, ∀ω. (19)

This inequality leads to (16).

Next, robust performance (8) is investigated, as shown in the following lemma.
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Lemma 3.2. Consider the uncertain system (2), if the ILC robust convergence condition (12) is satisfied
then the ILC robust performance condition∣∣∣∣Wp

1−Q
1−Q(1− LP∆)

∣∣∣∣ < 1, ∀P∆,∀ω (20)

is equivalent to ∣∣∣∣ Wp(1−Q)

1−Q+QLP̂

∣∣∣∣ +

∣∣∣∣∣ QLP̂W

1−Q+QLP̂

∣∣∣∣∣ < 1, ∀ω. (21)

Proof. Robust performance (RP) is satisfied if the worst-case function with respect to ∀∆ ∈ B∆ is less than
1, hence

(RP) ⇔ sup
∆∈B∆

∣∣∣∣ Wp(1−Q)

1−Q+QLP̂ +QLP̂W∆

∣∣∣∣ < 1, ∀ω. (22)

The supremum is actually a maximum and is achieved when ∆ is selected at each frequency such that |∆| = 1
and the terms (1−Q+QLP̂ ) and QLP̂W∆ (which are complex numbers) point in opposite directions. We
get

sup
∆∈B∆

∣∣∣∣ Wp(1−Q)

1−Q+QLP̂ +QLP̂W∆

∣∣∣∣ =
|Wp(1−Q)|

|1−Q+QLP̂ | − |QLP̂W |
. (23)

Note that from the necessary condition of ILC robust convergence (16), it is guaranteed that |1−Q+QLP̂ |−
|QLP̂W | > 0. By substituting (23) to (22), the robust performance condition (21) is derived.

Satisfying robust performance guarantees nominal performance but does not necessarily guarantees robust
convergence since (16) is a necessary condition. It is worth stressing that from (16) and (21), robust
performance is automatically obtained within a factor of 2 when both nominal performance and robust
convergence are satisfied. Hence, it is justified to relax the robust performance constraint in the optimization
problem (11) by using both nominal performance and robust convergence constraints. Furthermore, it is
observed that:

1−Q
1−Q+QLP̂

+
QLP̂

1−Q+QLP̂
= 1, ∀ω. (24)

In other words, tracking performance is limited due to model uncertainty, and Wp plays an important role
in analyzing the design trade-off between tracking performance and convergence speed. The design of Wp

is intuitive for control engineers since the idea is analogous to the sensitivity weight function in feedback
control ([19]). The difference is that for ILC design Wp is not restricted to causal functions.

Finally, the input constraint objective is given.

Lemma 3.3. Consider the uncertain system (2), the ILC input constraint condition∣∣∣∣Wu
QL

1−Q(1− LP∆)

∣∣∣∣ < 1, ∀P∆,∀ω (25)

is given by ∣∣∣∣ WuQL

1−Q+QLP̂

∣∣∣∣ +

∣∣∣∣∣ QLP̂W

1−Q+QLP̂

∣∣∣∣∣ < 1, ∀ω. (26)

Proof. The proof is given similarly to the robust performance case in Lemma 3.2.
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3.2. ILC design

From the results of the previous subsection, we relax the original optimization problem (11) by considering
the following optimization problem:

minimize
Q, L

|Q(1− LP̂ )|, ∀ω (27a)

subject to
∣∣∣Q(1− LP̂ )

∣∣∣ +
∣∣∣QLP̂W ∣∣∣ < 1, ∀ω (27b)∣∣∣∣ Wp(1−Q)

1−Q+QLP̂

∣∣∣∣ < 1, ∀ω (27c)∣∣∣∣ WuQL

1−Q+QLP̂

∣∣∣∣ < 1, ∀ω. (27d)

This problem is not convex and hard to solve. However, it is interesting to note that from (18):

1− |Q−QLP̂ | ≤ |1−Q+QLP̂ |, ∀ω, (28)

this yields

|Q−QLP̂ | ≤ γ ⇒ 1− γ ≤ |1−Q+QLP̂ |, ∀ω. (29)

Therefore,

|QLP̂W | < 1− γ ⇒ |Q−QLP̂ |+ |QLP̂W | < 1,∀ω, (30)

|Wp(1−Q)| < 1− γ ⇒
∣∣∣∣ Wp(1−Q)

1−Q+QLP̂

∣∣∣∣ < 1, ∀ω, (31)

|WuQL| < 1− γ ⇒
∣∣∣∣ WuQL

1−Q+QLP̂

∣∣∣∣ < 1, ∀ω. (32)

As a result, the following optimization problem is proposed to compute the learning controller:

minimize
Q, L

γ (33a)

subject to 0 ≤ γ < 1 (33b)

|Q(1− LP̂ )| ≤ γ, ∀ω (33c)

|QLP̂W | < 1− γ, ∀ω (33d)

|Wp(1−Q)| < 1− γ, ∀ω (33e)

|WuQL| < 1− γ, ∀ω. (33f)

Using the change of variable: L̂ = QL, then the constraints are linear functions of Q and L̂. Next, we
consider Q and L̂ as finite impulse response (FIR) learning filters, consisting of both causal and noncausal
taps, given by

Q(q) = q−nq−n + . . .+ q−1q−1 + q0 + q1q1 + . . .+ qn̄qn̄,

L̂(q) = l̂−mq−m + . . .+ l̂−1q−1 + l̂0 + l̂1q1 + . . .+ l̂m̄qm̄. (34)

Consequently, the constraints of (33) are linear functions of the impulse response parameters. Notice that
noncausal learning filters are essential to obtain high tracking performance and deal with non-minimum
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phase systems model [8].
The resulting optimization problem is semi-infinite since the constraints require evaluation for infinitely

values of ω. Semi-infinite constraints are handled by choosing a reasonable finite set of frequency samples
0 < ω1 < . . . < ωM (frequency gridding) up to the Nyquist frequency. Then we can replace the semi-infinite
constraints with the finite set of constraints at each of the given frequencies. For example, the constraint

|Q(1 − LP̂ )| ≤ γ,∀ω is replaced by |Q(jωk)(1 − L(jωk) ˆP (jωk))| ≤ γ, k = 1, . . . ,M . Since (33) is a linear
program, the computational cost of the optimization problem is linearly proportional to M . We can choose
a large enough M such that this frequency gridding is no practical issue. A standard rule of thumb is to
choose M ≈ 15h, where h is the total order of the filters, as discussed in [20]. In addition, parametric models
are not required in the ILC design (33), since only the systems frequency response function data at the given
finite set of frequencies is need.

3.3. Extensions
In this subsection, we present two extensions of the proposed ILC design. The first extension concerns

formulation of the ILC optimization problem with different objectives and constraints. And the second
extension considers a different class of learning filters, that is, infinite impulse response filters.

3.3.1. Different objectives and constraints

In (11), we optimize the convergence speed for given desired tracking performance and robustness, input
constraints. Another idea is to optimize the tracking performance considering a specified convergence speed
and other constraints. In other words, the problem is represented by

minimize
Q(q), L(q)

tracking performance

subject to robust convergence
convergence speed constraint
input constraint.

(35)

For this case, the convergence speed condition is defined as

|Wc(Q−QLP̂ )| ≤ 1, ∀ω. (36)

where Wc is the convergence speed weight selected by the designer.
The optimization problem is reformulated as a convex problem similarly as the proposed approach (33).

Following the same steps as in section III.B, (35) transforms into following convex problem:

minimize
Q, L

γ

subject to |WcQ(1− LP̂ )| ≤ 1, ∀ω
|WcQLP̂W | < |Wc| − 1, ∀ω
|Wp(1−Q)| < γ(1− |W−1

c |), ∀ω
|WuQL| < γ(1− |W−1

c |), ∀ω.

(37)

3.3.2. Infinite impulse response (IIR) filters

The Q-filter and learning function are not necessarily limited to FIR filters. We can also extend the
results to IIR filters, for example, linearly parameterized controllers, as given by

Q(q) = q0φ0(q) + q1φ1(q) + . . .+ qnφn(q),

L̂(q) = l̂0ϕ0(q) + l̂1ϕ1(q) + . . .+ l̂mϕm(q),

where q0, q1, . . . , l0, l1, . . . are the filter parameters, and φi(q), ϕi(q) are a selected set of orthonormal basis
functions [21]. This technique requires the selection of the basis functions, and can be useful in cases where
the required length of the FIR filters is too large.
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4. Numerical Illustration

This section illustrates the potential of the proposed ILC design approach. The numerical validation
comprises two parts. First, we compare the proposed ILC approach with a conventional model-inversion ILC
design. Second, we analyze the design trade-off between converged tracking error and convergence speed by
considering different performance weights Wp(q) and multiplicative uncertainty weights W (q) in our method.

The considered system is a non-minimum phase system:

P̂ (s) =
−1000(s− ω3)

(s/ω1 + 1)[(s/ω2)2 + 2ζ(s/ω2) + 1]
; (38)

where ω1 = 2π, ω2 = 100π, ω3 = 20π, and ζ = 0.6. The model is discretized with a sampling time T = 0.001s.
Fig. 1 shows the nominal model. The gray area represents the considered system uncertainty corresponding
to the uncertainty weight W (q) shown in figure 2. The performance weight Wp(q) is designed such that the
converged tracking error is small at low frequencies up to about 60Hz. The input weight Wu(q) is used to
constraint the input signal at high frequencies (f ≥ 200Hz). These weights are also shown in Fig. 2.
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Figure 3: Model-inversion TSA-based ILC design

4.1. Comparison with model-inversion ILC

When applying the model-inversion ILC approach, L(q) is a stable approximation of the inverse of the
non-minimum phase system model. Several model inversion approximation schemes exist [22]. In this paper
we apply the truncated series approximation (TSA) scheme with 10 noncausal filter tabs [23]. Q(q) is initially
designed as a low-pass Butterworth filter of order 1. This filter is then applied forward and backward to
the signal, yielding a 2nd-order zero-phase low-pass filter. The cut-off frequency of the Butterworth filter is
chosen such that the resulted zero-phase filter satisfies the robust convergence condition (5), as given in Fig.
3.

In our multi-objective ILC approach, Q(q) and L(q) are solutions of the optimization problem (33). L(q)
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Figure 4: Designed Q-filters
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Figure 7: Robustness and convergence speed

has the same number of noncausal filter tabs as the learning function in the model-inversion ILC. Q(q) is a
zero-phase FIR filter (34), where the impulse responses are symmetric about q0 and the order n̄ = 15. The
number of frequency samples is 5000 samples. The Matlab-based convex modeling framework CVX with the
solver MOSEK to is used to solve the optimization problem (33) [24]. It takes 14 seconds to compute the
solution in our standard laptop with an Intel Core I5 processor.

Fig. 4 and Fig. 5 show the Q-filter and tracking performance function, respectively. Clearly, the proposed
multi-objective ILC design approach achieves significantly higher bandwidth than the model-inversion ILC
design. This demonstrates the main advantage of our one-step optimization based ILC approach. In Fig.
5, the performance condition (27c) is also verified, indicating the capacity of shaping the ILC tracking
performance function of the multi-objective approach.

Fig. 6 and Fig. 7 show the learning function L(q) and the convergence speed, respectively, of both
approaches. The optimal solution γopt of the optimization problem (33) is also illustrated. From Fig. 7,
it can be seen that the convergence speed of our multi-objective approach is frequency independent up to
about 20Hz, and is at least γopt for any frequency. The model-inversion ILC converges faster below 5Hz
and above 50Hz, at the price of slower convergence between 5Hz and 50Hz. This faster convergence below
5Hz is realized by the model-inversion approach by a good match of L(q) with the inverse of the system,
and above 50Hz is realized by the roll-off the Q-filter. The learning function L(q) of the multi-objective
approach matches the inverse of the system model less accurately at low frequencies, leaving more freedom
to approximate the inverse model better in the frequency range 5 - 50Hz in order to realize a more uniform
convergence speed over a wider frequency range. Fig. 6 also shows that our learning function is extremely
small at high frequencies f ≥ 200Hz. This is because the input weight function was imposed such that
learning at these frequencies is not important. Fig. 8 shows the input performance of both approaches.
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Clearly, the input gain at high frequencies of our multi-objective approach is substantially smaller than the
model-inversion ILC, which is usually more desirable.

Notice that with the given performance weight Wp(q), the optimal convergence speed γopt also depends
on the input constraint condition and the assigned number of filter tabs of Q(q) and L(q) in the optimization
problem (33). In order to further investigate these dependencies, we apply the proposed ILC design for two
other cases. First, the input constraint is ignored in the optimization problem (33). Second, the number
of tabs of Q(q) is increased, i.e. n̄ = 30 (the order of L(q) is remained). The results are given in Table
I. Clearly, input constraint will lower the convergence speed. In addition, the higher Q-filter order yields
higher convergence speed.

Table 1: Optimal convergence speed γopt

Input constraint Without input constraint

n̄ = 15 0.36 0.27

n̄ = 30 0.11 0.09

The above analyses are for all uncertain models in the uncertainty set (2). Next, we apply both ILC
approaches to the one particular uncertain system of the considered set in order to validate the results in
the time domain, that is, with

∆(s) =
s− 1

s+ 1
. (39)

The reference signal is a smoothed step trajectory. The results are shown in Fig. 9 and Fig. 10. It can
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Figure 9: Multi-objective ILC designs: n̄ = 15 and with input constraint (solid), n̄ = 15 and without input constraint (dash),
n̄ = 30 and with input constraint (dash-dot), and comparison with model-inversion ILC (gray)
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Figure 10: Asymptotic tracking error: multi-objective ILC (black) and model-inversion ILC (gray)

be seen that both approaches achieve convergence. The convergence speed with n = 15 (solid line) of our
multi-objective approach is considerably lower than the model-inversion approach (grey line), however the
asymptotic tracking error is considerably smaller. Without sacrificing on the asymptotic tracking error, the
convergence speed of the multi-objective approach considerably increases when the input constraints are
removed and the Q-filter order n̄ is increased from 15 to 30. In the last case a similar convergence speed as
the model-inversion approach is obtained.

4.2. Class of uncertain systems
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Figure 11: Bode-diagrams of the ten random uncertain plants

In this subsection, we validate the proposed approach with different uncertain systems in the considered
uncertainty set (2). First, random LTI uncertainty models ∆(q) where ‖∆(q)‖∞ ≤ 1 are generated using the
MATLAB command ultidyn, yielding ten different system plants P∆(q). The uncertain plants are shown in
Fig. 11. Next, we apply the designed controller with the case n̄ = 15 to these plants. Fig. 12 shows that
our algorithm achieves monotonic convergence and high tracking performance for all considered systems.
Finally, we simulate again with 1000 generated random uncertainty models ∆(q). The controller is applied
to these uncertain plants and then the tracking performance is averaged. The result is also shown in the in
Fig. 12. This figure confirms the effectiveness of the proposed design for a large set of uncertain plants in
the considered uncertainty set.
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Figure 12: Tracking performance with the ten considered uncertain plants and the average tracking performance with 1000
random uncertain plants (circle markers line)

4.3. Design trade-off analysis

In this subsection, the trade-off between tracking performance and convergence speed of our multi-
objective ILC approach is further analyzed. The convexity of the obtained optimization problem allows a
straightforward and efficient computation of the trade-off curves. The results are obtained by scaling the
performance weight Wp(q) and the multiplicative uncertainty weight Wp(q) in the optimization problem
(33), i.e. replace Wp(q) by a × Wp(q) with a = 0.2, 0.4, . . . , 1.4, and replace W (q) by b × W (q) with
b = 1.1, 1.2, . . . , 1.6.

In Fig. 13, we show the trade-off curves between the asymptotic tracking error ‖e∞(t)‖ and the optimal
convergence speed γopt considering different performance weights and uncertainty weights. The asymptotic
tracking errors are calculated using the uncertain system (39). Clearly, the results demonstrate that the larger
performance weight results in lower convergence speed but smaller converged tracking error. In addition,
the larger uncertainty weight yields lower convergence speed and larger converged tracking error. These
conclusions are further confirmed in Fig. 14 and Fig. 15, where tracking errors in the trial domain are
plotted with different performance weights and uncertainty weights, respectively.
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Figure 13: Trade-off curves: convergence speed vs asymptotic tracking error with different performance weights and multiplica-
tive uncertainty weights
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Figure 14: Tracking performance with uncertainty weight W (q) and different performance weights
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Figure 15: Tracking performance with performance weight Wp(q) and different multiplicative uncertainty weights
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5. Conclusion

The main contribution of this paper is an ILC design that can incorporate multiple ILC design objectives:
robust convergence accounting for model uncertainty, tracking performance, convergence speed, and input
constraint. The proposed design approach corresponds to a convex optimization problem that can be solved
efficiently for optimal learning parameters Q(q) and L(q) simultaneously. This design also allows the com-
putation of the trade-off curves between objectives. Detailed analysis of the proposed optimal ILC approach
and comparison with the conventional model-inversion ILC are presented for a uncertain non-minimum phase
plant.
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[14] M. Norrlöf, S. Gunnarsson, Experimental comparison of some classical iterative learning control algo-
rithms, IEEE Transactions on Robotics and Automation, 18 (4) (2002) 636–641.

[15] R. Pintelon, J. Schoukens, System Identification: A Frequency Domain Approach, Wiley-IEEE Press,
New York, 2001.

[16] A. Haber, P. Fraanje, M. Verhaegen, Fast and robust iterative learning control for lifted systems, in:
Proceedings of the 18th IFAC World Congress, 2011.

[17] T. D. Son, G. Pipeleers, J. Swevers, Robust analysis and synthesis with unstructured model uncertainty
in lifted system iterative learning control, in: Proceedings of the American Control Conference, pp.
4892–4897.

[18] G. Pipeleers, K. Moore, Unified analysis of iterative learning and repetitive controllers in trial domain,
IEEE Transactions on Automatic Control, 59 (4) (2014) 953–965.

[19] S. Skogestad, I. Postlethwaite, Multivariable feedback control: analysis and design, John Wiley, 2005.

[20] S.-P. Wu, S. Boyd, L. Vandenberghe, FIR filter design via semidefinite programming and spectral
factorization, in: Proceedings of the 1996 IEEE Conference on Decision and Control, pp. 271–276.

[21] P. S. C. Heuberger, P. M. J. Van Den Hof, B. Wahlberg, Modelling and identification with rational
orthogonal basis functions, Springer, 2004.

[22] J. Butterworth, L. Y. Pao, D. Abramovitch, The effect of nonminimum-phase zero locations on the
performance of feedforward model-inverse control techniques in discrete-time systems, in: Proceedings
of the American Control Conference, pp. 2696–2702.

[23] E. Gross, M. Tomizuka, Experimental flexible beam tip tracking control with a truncated series approx-
imation to uncancelable inverse dynamics, IEEE Transactions on Control Systems Technology, 2 (4)
(1994) 382–391.

[24] CVX: Matlab software for disciplined convex programming, version 2.0, 2012. (available from:
http://cvxr.com/cvx).

16


